#### Strictly Associative Sigmas (Work In Progress)

#### Emmanuel (Emma) Suárez Acevedo

MURI Meeting 2024

#### Martin-Löf Type Theory (MLTT)

There are the following judgements:

- **Contexts**:  $\vdash \Gamma cx$  **Types**:  $\Gamma \vdash A$  type
- **Substitutions:**  $\Delta \vdash \gamma : \Gamma$  **Terms:**  $\Gamma \vdash a : A$

Of particular interest to this talk are the **Unit** type and  $\Sigma$ -types:

| ⊢ Γ cx                | ⊢ Г сх                                | $\Gamma \vdash A$ type               | Γ.A⊢Btype |
|-----------------------|---------------------------------------|--------------------------------------|-----------|
| Г ⊢ <b>Unit</b> type  | Γ ⊢ tt ∶ Unit                         | $\Gamma \vdash \Sigma(A, A)$         | B) type   |
| $\Gamma \vdash a : A$ | Г.A ⊢ Btype                           | $\Gamma \vdash b : B[\mathbf{id}.d]$ | a]        |
|                       | $\Gamma \vdash \mathbf{pair}(a, b)$ : | $\Sigma(A, B)$                       |           |

### Suggested by Favonia, Carlo Angiuli, and Jon Sterling: What if we make $\Sigma$ -types unital and associative?

| $\Gamma \vdash A$ type                     |                                           | $\Gamma \vdash A$ type                           |  |
|--------------------------------------------|-------------------------------------------|--------------------------------------------------|--|
| $\Gamma \vdash \Sigma(\mathbf{Unit}, A) =$ | A type Γ                                  | $\vdash \Sigma(A, Unit) = A \operatorname{type}$ |  |
| Γ ⊢ <i>A</i> type                          | Γ. <i>A</i> ⊢ <i>B</i> type               | $\Gamma.A.B \vdash C$ type                       |  |
| $\Gamma \vdash \Sigma(A,$                  | $\overline{\Sigma(B,C)} = \Sigma(\Sigma($ | <i>A</i> , <i>B</i> ), <i>C</i> ) type           |  |

#### Consequences?

- Consistency?
- Normalization?
- Elaboration? (i.e. to develop a proof assistant)

#### Motivation

- 1. Usability of proof assistants
- 2. Curiosity?

#### Motivation

#### 1. Usability of proof assistants

2. Curiosity?

$$\begin{array}{l} \text{Poset}: \text{Set} \rightarrow \text{Set}_1 \\ \text{Poset} \; X = & \sum \left[ \_ \leq \_ \in (X \rightarrow X \rightarrow \text{Set}) \; \right] \\ & - \; \text{reflexivity} \\ & (\forall \; x \rightarrow x \leq x) \times \\ & - \; \text{antisymmetry} \\ & (\forall \; x \; y \rightarrow x \leq y \rightarrow y \leq x \rightarrow x \equiv y) \times \\ & - \; \text{transitivity} \\ & (\forall \; x \; y \; z \rightarrow x \leq y \rightarrow y \leq z \rightarrow x \leq z) \end{array}$$

 $\begin{array}{l} Monoid: Set \rightarrow Set\\ Monoid M = \varSigma[(\_+\_,\_) \in Semigroup M]\\ & \varSigma[e \in M]\\ & -e \text{ is a left and right identity}\\ & (\forall m \rightarrow e + m \equiv m) \times\\ & (\forall m \rightarrow m + e \equiv m) \end{array}$ 

- Poset X : \_<\_  $\times$  </refl  $\times$  </antisym  $\times$  </trans
- Semigroup S : \_+\_ × +/assoc
- Monoid M : semigrp × e × +/identity<sup>1</sup> × +/identity<sup>r</sup>

$$\begin{array}{l} \mathsf{PoMonoid}\ \mathsf{M} = \varSigma \left[ \ ((\_,\_)\_),\_,\_,\_) \in \mathsf{Monoid}\ \mathsf{M} \ \right] \\ \varSigma \left[ \ (\_\leq\_,\_) \in \mathsf{Poset}\ \mathsf{M} \ \right] \\ - \ \mathsf{compatibility}\ \mathsf{of}\ \_\cdot\_ \ \mathsf{with}\ \_\leq\_ \\ (\forall\ x\ y\ z \to x \le y \to (x \cdot z) \le (y \cdot z)) \times \\ (\forall\ x\ y\ z \to x \le y \to (z \cdot x) \le (z \cdot y)) \end{array}$$

- Poset X : \_<\_ × </refl × </antisym × </trans</pre>
- Semigroup S : \_+\_ × +/assoc
- Monoid M : semigrp × e × +/identity<sup>1</sup> × +/identity<sup>r</sup>
- PoMonoid M : monoid × poset × +/compat<sup>r</sup> × +/compat<sup>1</sup>

$$\begin{array}{l} \text{prop}: \forall \{M\} \\ & ((((\_+\_,\_)], e,\_,\_)), (\_\leq\_,\_,\_,\_),\_,\_): \text{PoMonoid } M) \\ & \rightarrow \forall \ m \rightarrow (e + m) \leq m \end{array}$$

prop . . .

Mental overhead to use the components of the pomonoid

- Poset X :  $\_\leq\_$  ×  $\leq$ /refl ×  $\leq$ /antisym ×  $\leq$ /trans
- Semigroup S : \_+\_ × +/assoc
- Monoid M : semigrp × e × +/identity<sup>1</sup> × +/identity<sup>r</sup>
- PoMonoid M : monoid × poset × +/compat<sup>r</sup> × +/compat<sup>1</sup>

$$\begin{array}{l} \text{prop}: \forall \left\{ M \right\} \\ & \left( \left( \left( \left( - + \_, \_ \right), e , \_, \_ \right), \left(\_ \le \_, \_, \_, \_ \right), \_, \_ \right) : \text{PoMonoid } M \right) \\ & \rightarrow \forall \ m \rightarrow (e + m) \le m \\ \text{prop} \dots \end{array}$$

What if we had strictly associative sigmas?

- Poset X : \_<\_  $\times$  </refl  $\times$  </antisym  $\times$  </trans
- Semigroup S : \_+\_ × +/assoc
- Monoid M : semigrp × e × +/identity<sup>1</sup> × +/identity<sup>r</sup>
- PoMonoid M : monoid × poset × +/compat<sup>r</sup> × +/compat<sup>1</sup>

$$\begin{array}{l} \text{prop}: \forall \left\{ M \right\} \\ ((\_+\_,\_,\_,e,\_,\_,\_,\_,\_,\_,\_,\_,\_,\_): \text{PoMonoid } M) \\ \rightarrow \forall \ m \rightarrow (e+m) \leq m \\ \text{prop} \dots \end{array}$$

#### **Motivation**

1. Usability of proof assistants  $\checkmark$ 

• e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

#### **Motivation**

1. Usability of proof assistants  $\checkmark$ 

• e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

#### Related work

Type theory is a polynomial pseudomonad and polynomial pseudoalgebra (Awodey and Newstead 2018)

#### **Review: polynomials**

Let  $\mathcal{E}$  be a locally cartesian closed category (lccc).

A **polynomial**  $p : I \rightarrow J = (s, f, t)$  in  $\mathcal{E}$  is a diagram of the form:



Every morphism  $f : B \to A$  in  $\mathcal{E}$  is a polynomial  $\mathbf{1} \to \mathbf{1}$  (taking *s* and *t* to be the unique morphisms to the terminal object  $\mathbf{1}$  of  $\mathcal{E}$ )

For any object *I*, the **identity polynomial**  $i_I : I \leftrightarrow I$  is  $(id_I, id_I, id_I)$ 

#### **Review: polynomials**

A **morphism of polynomials**  $\varphi : p \Rightarrow q$  is an object  $D_{\varphi}$  and a triplet of morphisms  $(\varphi_0, \varphi_1, \varphi_2)$ 

 $\varphi$  is **cartesian** if  $\varphi_2$  is invertible, in which case it is uniquely represented by the following diagram:



with p = (s, f, t) and g = (u, g, v)

#### **Review: polynomials**

Recall any morphism in  $\mathcal{E}$  can be considered as a polynomial  $\mathbf{1} \leftrightarrow \mathbf{1}$ .

For two morphisms  $f : B \to A$  and  $g : D \to C$ , a cartesian morphism  $\varphi : f \Rightarrow g$  can be further simplified to the following pullback square:



A **natural model** of type theory is a category  $\mathbb C$  along with:

- ▶ a terminal object ◊
- ▶ a *representable* map of presheaves  $p : \dot{U} \rightarrow U$  on  $\mathbb{C}$

(Awodey 2018)

- ▶  $p: \dot{U} \to U$  is a morphism in the lccc **Set**<sup> $\mathbb{C}^{op}$ </sup>
- ▶ *p* can be considered a polynomial  $\mathbf{1} \leftrightarrow \mathbf{1}$  in  $\mathbf{Set}^{\mathbb{C}^{op}}$
- The conditions for the natural model to support unit and dependent sum types can be phrased in terms of morphisms of polynomials

#### Review: natural model and Unit type

The model supports unit types iff there exists a cartesian morphism  $\eta : i_1 \Rightarrow p$ . Diagrammatically:



#### Review: natural model and $\Sigma$ -types

The model supports dependent sum types iff there exists a cartesian morphism  $\mu : p \cdot p \Rightarrow p$ . Diagrammatically:



#### Review: polynomial monad

A **polynomial monad** is a quadruple  $(I, p, \eta, \mu)$  consisting of:

- an object I of  $\mathcal{E}$
- a polynomial  $p: I \leftrightarrow I$  in  $\mathcal{E}$
- ► cartesian morphisms  $\eta : i_l \Rightarrow p$  and  $\mu : p \cdot p \Rightarrow p$  satisfying the usual monad axioms (e.g.  $\mu \circ (p \cdot \eta) = id_p$ )

Is  $(1, p, \eta, \mu)$  a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

 $\mu \circ (p \cdot \eta) = \mathrm{id}_p$  $\mu \circ (\eta \cdot p) = \mathrm{id}_p$ 

Is  $(1, p, \eta, \mu)$  a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

$$\mu \circ (p \cdot \eta) = \mathrm{id}_p$$
$$\mu \circ (\eta \cdot p) = \mathrm{id}_p$$

No – this would correspond to  $\Sigma(\text{Unit}, A)$  being equal to A and  $\Sigma(A, \text{Unit})$  being equal to A, which is not the case in MLTT.

Is  $(1, p, \eta, \mu)$  a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

$$\mu \circ (p \cdot \mu) = \mu \circ (\mu \cdot p)$$

Is  $(1, p, \eta, \mu)$  a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

$$\mu \circ (p \cdot \mu) = \mu \circ (\mu \cdot p)$$

No – this would correspond to  $\Sigma(A, \Sigma(B, C))$  being equal to  $\Sigma(\Sigma(A, B), C)$ , which is not the case in MLTT.

Dependent type theories admitting a unit type and dependent sum types give rise to a polynomial *pseudo*monad. (Awodey and Newstead 2018)

On the other hand, if (1, p, η, μ) were a polynomial monad – this model would seem to have a correspondence with MLTT with unital and associative Σ-types.

#### **Motivation**

1. Usability of proof assistants  $\checkmark$ 

e.g. reduces mental overhead when dealing with nested sums inviosity?

2. Curiosity?  $\checkmark$ 

e.g. learning more about type theory as a polynomial monad

#### $\Sigma$ -types are unital

Γ⊢Atype

 $\Gamma \vdash \Sigma(\mathbf{Unit}, A) = A$  type

 $\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \Sigma(A, \text{Unit}) = A \text{ type}}$ 

#### $\Sigma$ -types are unital

 $\Gamma \vdash A$  type

 $\Gamma \vdash \Sigma(\text{Unit}, \mathbf{A}) = A$  type

 $\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \Sigma(A, \text{Unit}) = A \text{ type}}$ 

#### $\Sigma$ -types are unital



#### $\Sigma$ -types are associative

## $\frac{\Gamma \vdash A \text{ type } \Gamma.A \vdash B \text{ type } \Gamma.A.B \vdash C \text{ type }}{\Gamma \vdash \Sigma(A, \Sigma(B, C)) = \Sigma(\Sigma(A, B), C) \text{ type }}$

#### $\Sigma$ -types are associative

## $\frac{\Gamma \vdash A \text{ type } \Gamma.A \vdash B \text{ type } \Gamma.A.B \vdash C \text{ type }}{\Gamma \vdash \Sigma(A, \Sigma(B, C)) = \Sigma(\Sigma(A, B), \mathbb{C}) \text{ type }}$

#### $\Sigma$ -types are associative

# $\frac{\Gamma \vdash A \text{ type}}{\vdash \Gamma.\Sigma(A, B) = \Gamma.A.B \text{ cx}}$

 $\frac{\Gamma \vdash A \text{ type } \Gamma.A \vdash B \text{ type } \Gamma.A.B \vdash C \text{ type }}{\Gamma \vdash \Sigma(A, \Sigma(B, C)) = \Sigma(\Sigma(A, B), C) \text{ type }}$ 

What does this mean for elaboration?

 e.g. synthesizing a type for a variable preterm (with the usual de Brujin index representation)

1.Nat.Nat  $\vdash$  (var 0)  $\Rightarrow$  ??  $\rightsquigarrow$  q

#### Context equations?

What does this mean for elaboration?

 e.g. synthesizing a type for a variable preterm (with the usual de Brujin index representation)

**1.Nat.Nat**  $\vdash$  (var 0)  $\Rightarrow$  Nat  $\rightsquigarrow$  q

**1**.Nat.Nat  $\vdash$  (var 0)  $\Rightarrow \Sigma(Nat, Nat) \rightsquigarrow q$ 

 No longer deterministic! This is an issue even if we change variables to be checked

#### **Context equations?**

What does this mean for normalization?

- Contexts have normal forms!
- An algorithm for normalization (e.g. NbE) now must first normalize the context

#### Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda calculus (STLC)?

Context equations:

| ⊢ Γ cx                            | ⊦ Г сх | Atype              | Btype |
|-----------------------------------|--------|--------------------|-------|
| $\vdash \Gamma. Unit = \Gamma cx$ | ⊢Γ.(A  | $(* B) = \Gamma.A$ | A.Bcx |

#### Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda calculus (STLC)?

Context equations:

| ⊢ Γ cx                  | ⊦ Γ cx        | A type                                          | Btype |  |
|-------------------------|---------------|-------------------------------------------------|-------|--|
| ⊢ Γ. <b>Unit</b> = Γ cx | ⊢Γ.( <i>/</i> | $\vdash \Gamma.(A * B) = \Gamma.A.B\mathrm{cx}$ |       |  |

The context equations have the same effect on normalization and elaboration!

#### Current and future work

- NbE for STLC with unital and associative product types (including context equations)
- Elaboration for STLC with unital and associative product types (including context equations)
- Adapt both for MLTT
- Learn more about type theory as a polynomial monad and polynomial algebra

#### Thank you!

Questions?

References:

- Awodey, S. (2018). Natural models of homotopy type theory. Mathematical Structures in Computer Science, 28(2), 241-286.
- Awodey, S. and Newstead, C. (2018). Polynomial pseudomonads and dependent type theory. arXiv preprint arXiv:1802.00997.