Strictly Associative Sigmas (Work In Progress)

Emmanuel (Emma) Suarez Acevedo

MURI Meeting 2024

1/34

Martin-Lof Type Theory (MLTT)

There are the following judgements:

> Contexts: - I' cx > Types: I Atype
» Substitutions: Ay : T » Terms:T'Fa: A

Of particular interest to this talk are the Unit type and X-types:

F T cx F T cx '+ Atype I''AF+ Btype
I' + Unit type I+ tt : Unit I' - Z(A B) type

F'ta:A I''A+ Btype I'+b: Blid.a]
I + pair(a b) : X (A, B)

2/34

Idea

Suggested by Favonia, Carlo Angiuli, and Jon Sterling:
What if we make X-types unital and associative?

'+ Atype '+ Atype
I+ X (Unit, A) = Atype I' + X (A, Unit) = Atype

I'+ Atype I''A+ Btype I''A.B+ Ctype
I'+ 3(A%(B,C)) = X(2(A B), C) type

3/34

Consequences?

» Consistency?
» Normalization?

» Elaboration? (i.e. to develop a proof assistant)

4/34

Motivation

1. Usability of proof assistants

2. Curiosity?

5/34

Motivation

1. Usability of proof assistants

2. Curiosity?

6/34

Example

Poset : Set — Set,

Poset X=X[_<_ € (X — X — Set)]
- reflexivity
(Vx —x<x) x
— antisymmetry
(Vxy = x<y—=y<x—=X=y)x
- transitivity
(Vxyz—=+x<y—y<z—x<2z)

7/34

Example

Semigroup : Set — Set
Semigroup S=X%[_+_e€(S—S—S)]
- _+_ 1s associative
(V S1S;S3 7S + (52 + 53) = (51 + 52) + 53)

Monoid : Set — Set

Monoid M = X[(_+_, _) € Semigroup M]
J[eeM]
- e is a left and right identity
Vm—e+m=m)x
Vm—m+e=m)

8/34

Example

- Poset X : _<_ x </refl x </antisym x </trans
- Semigroup S : _+_ x +/assoc
- Monoid M : semigrp x e x +/identity! x +/identity"

PoMonoid M = X[((__,_),_,_,_) € Monoid M]
X[(<_,_)€Poset M]
— compatibility of _-_ with _<_
Vxyz—=x<y—=(x-2)<(y-2)x
Vxyz—=x<y—=(z-x)<(z-y))

9/34

Example

- Poset X : _<_ x </refl x </antisym x </trans

- Semigroup S : _+_ x +/assoc

Monoid M : semigrp x e x +/identity! x +/identity"
PoMonoid M : monoid x poset x +/compat” x +/compat!

prop : V {M}
((C+_yDse,_,), <, _,_,),_,_): PoMonoid M)
—VYm—=(e+m)<m

prop ...

10/34

Example

> Mental overhead to use the components of the pomonoid

Poset X : _<_ x </refl x </antisym x </trans

- Semigroup S : _+_ x +/assoc

Monoid M : semigrp x e x +/identity! x +/identity"
PoMonoid M : monoid x poset x +/compat” x +/compat!

prop : V {M}
((((_+_’_)’e’_’_)9(_S_,_;_,_),_,_)3POMOI’IOidM)

—Vm—=(e+m)<m
prop ...

11/34

Example

> What if we had strictly associative sigmas?

Poset X : _<_ x </refl x </antisym x </trans

- Semigroup S : _+_ x +/assoc

Monoid M : semigrp x e x +/identity! x +/identity"
PoMonoid M : monoid x poset x +/compat” x +/compat!

prop : Y {M}
(+_,_.e,_,_, <_,_,_._,_,_):PoMonoid M)

—Vm—=(e+m)<m
prop ...

12/34

Motivation

1. Usability of proof assistants v/
> e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

13/34

Motivation

1. Usability of proof assistants v/
> e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

14/34

Related work

Type theory is a polynomial pseudomonad and polynomial
pseudoalgebra (Awodey and Newstead 2018)

15/34

Review: polynomials

Let & be a locally cartesian closed category (lccc).
A polynomial p: | + J = (s,f,t) in & is a diagram of the form:

B— s A

I/ \J

Every morphism f : B— Ain & is a polynomial 1 + 1 (taking s and t
to be the unique morphisms to the terminal object 1 of &)

For any object I, the identity polynomial i; : I -+ Iis (id}, id}, id))

16/34

Review: polynomials

A morphism of polynomials ¢ : p + g is an object D, and a triplet
of morphisms (¢o, ¢1, ¢2)

¢ is cartesian if ¢, is invertible, in which case it is uniquely

represented by the following diagram:

with p=(s,f,t) and g = (u, g v)

—>

D%m

ﬁ%:u
—~

17/34

Review: polynomials

Recall any morphism in & can be considered as a polynomial 1 + 1.

For two morphisms f : B— Aand g : D — C, a cartesian morphism
¢ : f = g can be further simplified to the following pullback square:

>

—

B
fmJ Po
D

8

f
-

O

18/34

Review: natural models

A natural model of type theory is a category C along with:
> aterminal object ¢

> a representable map of presheaves p : U — U on C

(Awodey 2018)

Review: natural model and polynomials

» p: U — Uisamorphism in the lccc Set®”
» pcan be considered a polynomial 1+ 1in Set®”

» The conditions for the natural model to support unit and
dependent sum types can be phrased in terms of morphisms of
polynomials

(Awodey and Newstead 2018)

Review: natural model and Unit type

The model supports unit types iff there exists a cartesian morphism
n : iy = p. Diagrammatically:

1_+>U

11— VU

(Awodey and Newstead 2018)

Review: natural model and X-types

The model supports dependent sum types iff there exists a cartesian
morphism y : p- p # p. Diagrammatically:

> Y Y Bla) —E—— U

AU g.uA @A
J
pp P
SUd—m—— U
AU Ho

(Awodey and Newstead 2018)

Review: polynomial monad

A polynomial monad is a quadruple (/, p, 1,) consisting of:
» an object / of &
» apolynomialp: [+ /in&
» cartesian morphisms n : i; #= pand p : p- p # p satisfying the
usual monad axioms (e.g. o (p-n) =idp)

(Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (1, p,n, 1) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
po(p-n)=idy
pro(n-p)=idy

(Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (1, p,n, pt) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
po(p-n)=idy

pro(n-p)=idy

No — this would correspond to X (Unit, A) being equal to A and
Y (A, Unit) being equal to A, which is not the case in MLTT.

(Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (1, p,n, pt) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
po(p-p)=po(u-p)

(Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (1, p,n, pt) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
po(p-p)=po(u-p)

No — this would correspond to X (A, X (B, C)) being equal to
Y (X (A, B), C), which is not the case in MLTT.

(Awodey and Newstead 2018)

Review: natural model and polynomial monads

Dependent type theories admitting a unit type and dependent sum
types give rise to a polynomial pseudomonad. (Awodey and Newstead
2018)

» On the other hand, if (1, p, 5, i) were a polynomial monad — this
model would seem to have a correspondence with MLTT with
unital and associative X-types.

26/34

Motivation

1. Usability of proof assistants v/

> e.g. reduces mental overhead when dealing with nested sums
2. Curiosity? v/

> e.g. learning more about type theory as a polynomial monad

27/34

Y -types are unital

'+ Atype ' Atype
I + X (Unit, A) = Atype T + X(A, Unit) = Atype

28/34

Y -types are unital

T'F Atype I' F Atype
I'F Z(Unit,A) = Atype I' F X (A Unit) = Atype

28/34

Y -types are unital

F I cx
t T.Unit =T cx

I'+ Atype I'+ Atype
I + X (Unit, A) = Atype T+ X(A, Unit) = Atype

28/34

2-types are associative

'+ Atype I''A+ Btype I''A.BF+ Ctype
I't 2(AZ(B,C)) =2(2(A B), C) type

29/34

2-types are associative

I' F Atype I''A+ Btype TI''A.B+ Ctype
I'+2(AZ(B 0) = Z(2(A B), C) type

29/34

2-types are associative

I'+ Atype I''A+ Btype
FT.2(A B) =T.A.Bcx

'+ Atype I''AF+ Btype I''A.B+ Ctype

T+X(AX(B C) = X(X(A B), C) type

29/34

Context equations?

What does this mean for elaboration?

» e.g. synthesizing a type for a variable preterm (with the usual de
Brujin index representation)

1.Nat.Nat + (var 0) = 77 ~» q

30/34

Context equations?

What does this mean for elaboration?

> e.g. synthesizing a type for a variable preterm (with the usual de
Brujin index representation)

1.Nat.Nat + (var 0) = Nat ~ q

1.Nat.Nat + (var 0) = X(Nat, Nat) ~» q

> No longer deterministic! This is an issue even if we change
variables to be checked

30/34

Context equations?

What does this mean for normalization?
» Contexts have normal forms!

> An algorithm for normalization (e.g. NbE) now must first
normalize the context

31/34

Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda
calculus (STLC)?

Context equations:

F I cx F I cx Atype Btype
F T.Unit =T cx FT.(A * B)=T.A.Bcx

32/34

Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda
calculus (STLC)?

Context equations:

F I cx F I cx Atype Btype
F T.Unit =T cx FT.(A * B)=T.A.Bcx

> The context equations have the same effect on normalization
and elaboration!

32/34

Current and future work

v

NbE for STLC with unital and associative product types
(including context equations)

v

Elaboration for STLC with unital and associative product types
(including context equations)

Adapt both for MLTT

Learn more about type theory as a polynomial monad and

v

v

polynomial algebra

33/34

Thank you!

»> Questions?

References:

> Awodey, S. (2018). Natural models of homotopy type theory.
Mathematical Structures in Computer Science, 28(2), 241-286.

> Awodey, S. and Newstead, C. (2018). Polynomial pseudomonads
and dependent type theory. arXiv preprint arXiv:1802.00997.

34/34

