
Strictly Associative Sigmas (Work In Progress)

Emmanuel (Emma) Suárez Acevedo

MURI Meeting 2024

1 / 34

Martin-Löf Type Theory (MLTT)

There are the following judgements:

▶ Contexts: ⊢ Γ cx
▶ Substitutions: Δ ⊢ 𝛾 : Γ

▶ Types: Γ ⊢ A type
▶ Terms: Γ ⊢ a : A

Of particular interest to this talk are the Unit type and 𝚺-types:

⊢ Γ cx

Γ ⊢ Unit type
⊢ Γ cx

Γ ⊢ tt : Unit

Γ ⊢ A type Γ.A ⊢ B type

Γ ⊢ 𝚺 (A,B) type

Γ ⊢ a : A Γ.A ⊢ B type Γ ⊢ b : B[id.a]
Γ ⊢ pair(a, b) : 𝚺 (A,B)

2 / 34

Idea

Suggested by Favonia, Carlo Angiuli, and Jon Sterling:
What if we make 𝚺-types unital and associative?

Γ ⊢ A type

Γ ⊢ 𝚺 (Unit,A) = A type

Γ ⊢ A type

Γ ⊢ 𝚺 (A,Unit) = A type

Γ ⊢ A type Γ.A ⊢ B type Γ.A.B ⊢ C type

Γ ⊢ 𝚺 (A, 𝚺 (B,C)) = 𝚺 (𝚺 (A,B),C) type

3 / 34

Consequences?

▶ Consistency?
▶ Normalization?
▶ Elaboration? (i.e. to develop a proof assistant)

4 / 34

Motivation

1. Usability of proof assistants

2. Curiosity?

5 / 34

Motivation

1. Usability of proof assistants
2. Curiosity?

6 / 34

Example

Poset : Set → Set1
Poset X = 𝛴[_≤_ ∈ (X → X → Set)]

– reflexivity
(∀ x → x ≤ x) ×
– antisymmetry
(∀ x y → x ≤ y → y ≤ x → x ≡ y) ×
– transitivity
(∀ x y z → x ≤ y → y ≤ z → x ≤ z)

7 / 34

Example

Semigroup : Set → Set
Semigroup S = 𝛴[_+_ ∈ (S → S → S)]

– _+_ is associative
(∀ s1 s2 s3 → s1 + (s2 + s3) ≡ (s1 + s2) + s3)

Monoid : Set → Set
Monoid M = 𝛴[(_+_ , _) ∈ Semigroup M]

𝛴[e ∈ M]
– e is a left and right identity
(∀m → e + m ≡ m) ×
(∀m → m + e ≡ m)

8 / 34

Example

– Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
– Semigroup S : _+_ × +/assoc
– Monoid M : semigrp × e × +/identityl × +/identityr

PoMonoid M = 𝛴[((_·_ , _) , _ , _ , _) ∈ Monoid M]
𝛴[(_≤_ , _) ∈ Poset M]
– compatibility of _·_ with _≤_
(∀ x y z → x ≤ y → (x · z) ≤ (y · z)) ×
(∀ x y z → x ≤ y → (z · x) ≤ (z · y))

9 / 34

Example

– Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
– Semigroup S : _+_ × +/assoc
– Monoid M : semigrp × e × +/identityl × +/identityr

– PoMonoid M : monoid × poset × +/compatr × +/compatl

prop : ∀ {M}
((((_+_ , _) , e , _ , _) , (_≤_ , _ , _ , _) , _ , _) : PoMonoid M)
→ ∀m → (e + m) ≤ m

prop . . .

10 / 34

Example

▶ Mental overhead to use the components of the pomonoid

– Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
– Semigroup S : _+_ × +/assoc
– Monoid M : semigrp × e × +/identityl × +/identityr

– PoMonoid M : monoid × poset × +/compatr × +/compatl

prop : ∀ {M}
((((_+_ , _) , e , _ , _) , (_≤_ , _ , _ , _) , _ , _) : PoMonoid M)
→ ∀m → (e + m) ≤ m

prop . . .

11 / 34

Example

▶ What if we had strictly associative sigmas?

– Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
– Semigroup S : _+_ × +/assoc
– Monoid M : semigrp × e × +/identityl × +/identityr

– PoMonoid M : monoid × poset × +/compatr × +/compatl

prop : ∀ {M}
((_+_ , _ , e , _ , _ , _≤_ , _ , _ , _ , _ , _) : PoMonoid M)
→ ∀m → (e + m) ≤ m

prop . . .

12 / 34

Motivation

1. Usability of proof assistants ✓
▶ e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

13 / 34

Motivation

1. Usability of proof assistants ✓
▶ e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

14 / 34

Related work

Type theory is a polynomial pseudomonad and polynomial
pseudoalgebra (Awodey and Newstead 2018)

15 / 34

Review: polynomials

Let E be a locally cartesian closed category (lccc).

A polynomial p : I p→ J = (s, f , t) in E is a diagram of the form:

B A

I J

f

s t

Every morphism f : B → A in E is a polynomial 111 p→ 111 (taking s and t
to be the unique morphisms to the terminal object 111 of E)

For any object I, the identity polynomial iI : I p→ I is (idI, idI, idI)

16 / 34

Review: polynomials

A morphism of polynomials 𝜑 : p p⇒ q is an object D𝜑 and a triplet
of morphisms (𝜑0, 𝜑1, 𝜑2)

𝜑 is cartesian if 𝜑2 is invertible, in which case it is uniquely
represented by the following diagram:

B A

I J

D C

f

𝜑1

⌟s

𝜑0

t

g

u v

with p = (s, f , t) and g = (u, g, v)

17 / 34

Review: polynomials

Recall any morphism in E can be considered as a polynomial 111 p→ 111.

For two morphisms f : B → A and g : D → C, a cartesian morphism
𝜑 : f p⇒ g can be further simplified to the following pullback square:

B A

D C

f

𝜑1

⌟
𝜑0

g

18 / 34

Review: natural models

A natural model of type theory is a category C along with:
▶ a terminal object ⋄
▶ a representable map of presheaves p : U̇ → U on C

((Awodey 2018)

Review: natural model and polynomials

▶ p : U̇ → U is a morphism in the lccc SetC
op

▶ p can be considered a polynomial 111 p→ 111 in SetC
op

▶ The conditions for the natural model to support unit and
dependent sum types can be phrased in terms of morphisms of
polynomials

((Awodey and Newstead 2018)

Review: natural model and Unit type

The model supports unit types iff there exists a cartesian morphism
𝜂 : i111 p⇒ p. Diagrammatically:

111 ¤U

111 U

𝜂1

⌟
p

𝜂0

((Awodey and Newstead 2018)

Review: natural model and 𝚺-types

The model supports dependent sum types iff there exists a cartesian
morphism 𝜇 : p · p p⇒ p. Diagrammatically:∑

A:U

∑
B:UA

∑
a:A

B(a) ¤U

∑
A:U

UA U

𝜇1

⌟
p·p p

𝜇0

((Awodey and Newstead 2018)

Review: polynomial monad

A polynomial monad is a quadruple (I, p, 𝜂, 𝜇) consisting of:
▶ an object I of E
▶ a polynomial p : I p→ I in E
▶ cartesian morphisms 𝜂 : iI p⇒ p and 𝜇 : p · p p⇒ p satisfying the

usual monad axioms (e.g. 𝜇 ◦ (p · 𝜂) = idp)

((Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (111, p, 𝜂, 𝜇) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
𝜇 ◦ (p · 𝜂) = idp

𝜇 ◦ (𝜂 · p) = idp

No — this would correspond to 𝚺 (Unit,A) being equal to A and
𝚺 (A,Unit) being equal to A, which is not the case in MLTT.

((Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (111, p, 𝜂, 𝜇) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
𝜇 ◦ (p · 𝜂) = idp

𝜇 ◦ (𝜂 · p) = idp

No — this would correspond to 𝚺 (Unit,A) being equal to A and
𝚺 (A,Unit) being equal to A, which is not the case in MLTT.

((Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (111, p, 𝜂, 𝜇) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
𝜇 ◦ (p · 𝜇) = 𝜇 ◦ (𝜇 · p)

No — this would correspond to 𝚺 (A, 𝚺 (B,C)) being equal to
𝚺 (𝚺 (A,B),C), which is not the case in MLTT.

((Awodey and Newstead 2018)

Review: natural model and polynomial monads

Is (111, p, 𝜂, 𝜇) a polynomial monad? In particular, does it satisfy the
usual monad laws?

For example:
𝜇 ◦ (p · 𝜇) = 𝜇 ◦ (𝜇 · p)

No — this would correspond to 𝚺 (A, 𝚺 (B,C)) being equal to
𝚺 (𝚺 (A,B),C), which is not the case in MLTT.

((Awodey and Newstead 2018)

Review: natural model and polynomial monads

Dependent type theories admitting a unit type and dependent sum
types give rise to a polynomial pseudomonad. (Awodey and Newstead
2018)

▶ On the other hand, if (111, p, 𝜂, 𝜇) were a polynomial monad — this
model would seem to have a correspondence with MLTT with
unital and associative 𝚺-types.

26 / 34

Motivation

1. Usability of proof assistants ✓
▶ e.g. reduces mental overhead when dealing with nested sums

2. Curiosity? ✓
▶ e.g. learning more about type theory as a polynomial monad

27 / 34

𝚺-types are unital

Γ ⊢ A type

Γ ⊢ 𝚺 (Unit,A) = A type

Γ ⊢ A type

Γ ⊢ 𝚺 (A,Unit) = A type

28 / 34

𝚺-types are unital

Γ ⊢ A type

Γ ⊢ 𝚺 (Unit,A) = A type

Γ ⊢ A type

Γ ⊢ 𝚺 (A,Unit) = A type

28 / 34

𝚺-types are unital

⊢ Γ cx

⊢ Γ.Unit = Γ cx

Γ ⊢ A type

Γ ⊢ 𝚺 (Unit,A) = A type

Γ ⊢ A type

Γ ⊢ 𝚺 (A,Unit) = A type

28 / 34

𝚺-types are associative

Γ ⊢ A type Γ.A ⊢ B type Γ.A.B ⊢ C type

Γ ⊢ 𝚺 (A, 𝚺 (B,C)) = 𝚺 (𝚺 (A,B),C) type

29 / 34

𝚺-types are associative

Γ ⊢ A type Γ.A ⊢ B type Γ.A.B ⊢ C type

Γ ⊢ 𝚺 (A, 𝚺 (B,C)) = 𝚺 (𝚺 (A,B),C) type

29 / 34

𝚺-types are associative

Γ ⊢ A type Γ.A ⊢ B type

⊢ Γ.𝚺 (A,B) = Γ.A.B cx

Γ ⊢ A type Γ.A ⊢ B type Γ.A.B ⊢ C type

Γ ⊢ 𝚺 (A, 𝚺 (B,C)) = 𝚺 (𝚺 (A,B),C) type

29 / 34

Context equations?

What does this mean for elaboration?
▶ e.g. synthesizing a type for a variable preterm (with the usual de

Brujin index representation)

111.Nat.Nat ⊢ (var 0) ⇒ ?????? ⇝ q

30 / 34

Context equations?

What does this mean for elaboration?
▶ e.g. synthesizing a type for a variable preterm (with the usual de

Brujin index representation)

111.Nat.Nat ⊢ (var 0) ⇒ Nat ⇝ q

111.Nat.Nat ⊢ (var 0) ⇒ 𝚺 (Nat,Nat) ⇝ q

▶ No longer deterministic! This is an issue even if we change
variables to be checked

30 / 34

Context equations?

What does this mean for normalization?
▶ Contexts have normal forms!
▶ An algorithm for normalization (e.g. NbE) now must first

normalize the context

31 / 34

Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda
calculus (STLC)?

Context equations:

⊢ Γ cx

⊢ Γ.Unit = Γ cx

⊢ Γ cx A type B type

⊢ Γ.(A ∗ B) = Γ.A.B cx

▶ The context equations have the same effect on normalization
and elaboration!

32 / 34

Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda
calculus (STLC)?

Context equations:

⊢ Γ cx

⊢ Γ.Unit = Γ cx

⊢ Γ cx A type B type

⊢ Γ.(A ∗ B) = Γ.A.B cx

▶ The context equations have the same effect on normalization
and elaboration!

32 / 34

Current and future work

▶ NbE for STLC with unital and associative product types
(including context equations)

▶ Elaboration for STLC with unital and associative product types
(including context equations)

▶ Adapt both for MLTT
▶ Learn more about type theory as a polynomial monad and

polynomial algebra

33 / 34

Thank you!

▶ Questions?

References:
▶ Awodey, S. (2018). Natural models of homotopy type theory.

Mathematical Structures in Computer Science, 28(2), 241-286.
▶ Awodey, S. and Newstead, C. (2018). Polynomial pseudomonads

and dependent type theory. arXiv preprint arXiv:1802.00997.

34 / 34

