Strictly Associative Sigmas (Work In Progress)

Emmanuel (Emma) Suárez Acevedo

MURI Meeting 2024

Martin-Löf Type Theory (MLTT)

There are the following judgements:

- ▶ Contexts: ⊢ Γ cx ▶ Types: Γ ⊢ A type
- **► Substitutions:** Δ \vdash γ : Γ ▶ Terms: Γ ⊢ a : A

Of particular interest to this talk are the Unit type and Σ -types:

Suggested by Favonia, Carlo Angiuli, and Jon Sterling: What if we make Σ -types unital and associative?

Consequences?

- ▶ Consistency?
- ▶ Normalization?
- \blacktriangleright Elaboration? (i.e. to develop a proof assistant)

Motivation

- 1. Usability of proof assistants
- 2. Curiosity?

Motivation

1. Usability of proof assistants

2. Curiosity?

Poset: Set
$$
\rightarrow
$$
 Set₁

\nPoset $X = \Sigma \left[_ \leq _ \in (X \to X \to Set) \right]$

\n $-$ reflexivity

\n $(\forall x \to x \leq x) \times$

\n $-$ antisymmetry

\n $(\forall x \ y \to x \leq y \to y \leq x \to x \equiv y) \times$

\n $-$ transitivity

\n $(\forall x \ y \ z \to x \leq y \to y \leq z \to x \leq z)$

Semigroup : Set \rightarrow Set Semigroup $S = \Sigma \left[\begin{array}{c} + \end{array} \right] \in (S \rightarrow S \rightarrow S)$ – _+_ is associative $(\forall s_1 s_2 s_3 \rightarrow s_1 + (s_2 + s_3) \equiv (s_1 + s_2) + s_3)$

Monoid : Set → Set Monoid M = [(_+_ , _) ∈ Semigroup M] [e ∈ M] – e is a left and right identity (∀ m → e + m ≡ m) × (∀ m → m + e ≡ m)

- Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
- Semigroup S : _+_ × +/assoc
- Monoid M : semigrp \times e \times +/identity¹ \times +/identity^r

Pomonoid M =
$$
\Sigma
$$
[((_- , _), _-, _- , _) \in Monoid M]

\n Σ [(\subseteq , _) \in Post M]

\n $-$ compatibility of $-$: \sup with $-\leq$

\n $(\forall x y z \rightarrow x \leq y \rightarrow (x \cdot z) \leq (y \cdot z)) \times$

\n $(\forall x y z \rightarrow x \leq y \rightarrow (z \cdot x) \leq (z \cdot y))$

- Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
- Semigroup S : _+_ × +/assoc
- Monoid M : semigrp \times e \times +/identity¹ \times +/identity^r
- PoMonoid M : monoid \times poset \times +/compat^r \times +/compat¹

$$
\begin{array}{l} \text{prop} : \forall \left\{ M \right\} \\ \left(\left(\left(\left(\begin{matrix} 1 & -1 \\ -1 & -1 \end{matrix} \right), e_{n-1}, _ \right), \left(\begin{matrix} -1 & -1 \\ -1 & -1 \end{matrix} \right), _ \right), _ \right) : \text{PoMonoid } M \right) \\ \rightarrow \forall \ m \rightarrow (e + m) \leq m \end{array}
$$

prop . . .

 \triangleright Mental overhead to use the components of the pomonoid

- Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
- Semigroup S : _+_ × +/assoc
- Monoid M : semigrp \times e \times +/identity¹ \times +/identity^r
- PoMonoid M : monoid \times poset \times +/compat^r \times +/compat¹

prop : ∀ {M}
\n
$$
(((\underbrace{(+_},_) , e, _,_) , (\leq_, _,_,_) , _) : PoMonoid M)
$$
\n
$$
\rightarrow \forall m \rightarrow (e + m) \leq m
$$
\nprop ...

 \triangleright What if we had strictly associative sigmas?

- Poset X : _≤_ × ≤/refl × ≤/antisym × ≤/trans
- Semigroup S : _+_ × +/assoc
- Monoid M : semigrp \times e \times +/identity¹ \times +/identity^r
- PoMonoid M : monoid \times poset \times +/compat^r \times +/compat¹

prop : ∀ {M}
\n
$$
((_+{_,_,e,_,_,_,\le_,_,_,_,_}) : PoMonoid M)
$$

\n→ ∀ m → (e + m) ≤ m

Motivation

1. Usability of proof assistants √

▶ e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

Motivation

1. Usability of proof assistants √

▶ e.g. reduces mental overhead when dealing with nested sums

2. Curiosity?

Related work

Type theory is a polynomial pseudomonad and polynomial pseudoalgebra (Awodey and Newstead 2018)

Review: polynomials

Let $\mathcal E$ be a locally cartesian closed category (lccc).

A **polynomial** $p : I \rightarrow J = (s, f, t)$ in E is a diagram of the form:

Every morphism $f : B \to A$ in $\mathcal E$ is a polynomial $1 \to 1$ (taking s and t to be the unique morphisms to the terminal object 1 of \mathcal{E})

For any object *I*, the **identity polynomial** $i_l : I \rightarrow I$ is (id_l, id_l, id_l)

Review: polynomials

A **morphism of polynomials** φ : $p \Rightarrow q$ is an object D_{φ} and a triplet of morphisms $(\varphi_0, \varphi_1, \varphi_2)$

 φ is cartesian if φ_2 is invertible, in which case it is uniquely represented by the following diagram:

with $p = (s, f, t)$ and $g = (u, g, v)$

Review: polynomials

Recall any morphism in $\mathcal E$ can be considered as a polynomial $1 \rightarrow 1$.

For two morphisms $f : B \to A$ and $g : D \to C$, a cartesian morphism φ : $f \Rightarrow g$ can be further simplified to the following pullback square:

A natural model of type theory is a category $\mathbb C$ along with:

- ▶ a terminal object ⋄
- ▶ a representable map of presheaves $p : \dot{U} \rightarrow U$ on \mathbb{C}

((Awodey 2018)

- ▶ $p : \dot{U} \rightarrow U$ is a morphism in the lccc Set^{C^{op}}
- ▶ p can be considered a polynomial $1 \rightarrow 1$ in Set^{C^{op}}
- \triangleright The conditions for the natural model to support unit and dependent sum types can be phrased in terms of morphisms of polynomials

Review: natural model and Unit type

The model supports unit types iff there exists a cartesian morphism $\eta : i_1 \Rightarrow p$. Diagrammatically:

Review: natural model and Σ -types

The model supports dependent sum types iff there exists a cartesian morphism μ : $p \cdot p \Rightarrow p$. Diagrammatically:

Review: polynomial monad

A **polynomial monad** is a quadruple (I, p, η, μ) consisting of:

- \blacktriangleright an object *l* of ϵ
- \triangleright a polynomial $p: I \rightarrow I$ in E
- ▶ cartesian morphisms η : $i_l \Rightarrow p$ and $\mu : p \Rightarrow p$ satisfying the usual monad axioms (e.g. $\mu \circ (p \cdot \eta) = id_n$)

Is $(1, p, \eta, \mu)$ a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

 $\mu \circ (p \cdot \eta) = id_p$ $\mu \circ (\eta \cdot p) = id_p$

Is $(1, p, \eta, \mu)$ a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

$$
\mu \circ (p \cdot \eta) = id_p
$$

$$
\mu \circ (\eta \cdot p) = id_p
$$

No – this would correspond to $\Sigma(\text{Unit}, A)$ being equal to A and $\Sigma(A,$ Unit) being equal to A, which is not the case in MLTT.

Is $(1, p, \eta, \mu)$ a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

$$
\mu\circ (p\cdot \mu)=\mu\circ (\mu\cdot p)
$$

Is $(1, p, \eta, \mu)$ a polynomial monad? In particular, does it satisfy the usual monad laws?

For example:

$$
\mu\circ (p\cdot \mu)=\mu\circ (\mu\cdot p)
$$

No – this would correspond to $\Sigma(A, \Sigma(B, C))$ being equal to $\Sigma(\Sigma(A, B), C)$, which is not the case in MLTT.

Dependent type theories admitting a unit type and dependent sum types give rise to a polynomial *pseudo*monad. (Awodey and Newstead 2018)

 \triangleright On the other hand, if $(1, p, \eta, \mu)$ were a polynomial monad – this model would seem to have a correspondence with MLTT with unital and associative Σ -types.

Motivation

1. Usability of proof assistants √

▶ e.g. reduces mental overhead when dealing with nested sums 2. Curiosity? ✓

 \triangleright e.g. learning more about type theory as a polynomial monad

Σ -types are unital

Γ ⊢ A type

 $\Gamma \vdash \Sigma$ (Unit, A) = A type

Γ ⊢ A type $\Gamma \vdash \Sigma(A, \text{Unit}) = A$ type

Σ -types are unital

 $\Gamma \vdash A$ type $\Gamma \vdash \Sigma$ (Unit, A) = A type

 $\Gamma \vdash A$ type $\Gamma \vdash \Sigma(A, \text{Unit}) = A$ type

Σ -types are unital

Σ -types are associative

Γ ⊢ A type Γ .A ⊢ B type Γ .A.B ⊢ C type $\Gamma \vdash \Sigma(A, \Sigma(B, C)) = \Sigma(\Sigma(A, B), C)$ type

Σ -types are associative

$Γ$ *⊢ A* type $Γ.A$ *⊢ B* type $Γ.A.B$ *⊢ C* type $\Gamma \vdash \Sigma(A, \Sigma(B, C)) = \Sigma(\Sigma(A, B), C)$ type

Σ -types are associative

 Γ + A type Γ Λ + Ω type

What does this mean for elaboration?

 \triangleright e.g. synthesizing a type for a variable preterm (with the usual de Brujin index representation)

1.Nat.Nat \vdash (var 0) \Rightarrow ?? \rightsquigarrow q

Context equations?

What does this mean for elaboration?

 \triangleright e.g. synthesizing a type for a variable preterm (with the usual de Brujin index representation)

1.Nat.Nat \vdash (var 0) \Rightarrow Nat \rightsquigarrow q

1.Nat.Nat \vdash (var 0) \Rightarrow ∑(Nat, Nat) \rightsquigarrow q

 \triangleright No longer deterministic! This is an issue even if we change variables to be checked

Context equations?

What does this mean for normalization?

- ▶ Contexts have normal forms!
- ▶ An algorithm for normalization (e.g. NbE) now must first normalize the context

Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda calculus (STLC)?

Context equations:

Simply-typed lambda calculus

What about in the simpler setting of the simply-typed lambda calculus (STLC)?

Context equations:

 \blacktriangleright The context equations have the same effect on normalization and elaboration!

Current and future work

- ▶ NbE for STLC with unital and associative product types (including context equations)
- ▶ Elaboration for STLC with unital and associative product types (including context equations)
- ▶ Adapt both for MLTT
- ▶ Learn more about type theory as a polynomial monad and polynomial algebra

Thank you!

▶ Questions?

References:

- ▶ Awodey, S. (2018). Natural models of homotopy type theory. Mathematical Structures in Computer Science, 28(2), 241-286.
- ▶ Awodey, S. and Newstead, C. (2018). Polynomial pseudomonads and dependent type theory. arXiv preprint arXiv:1802.00997.